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Introduction

In 1978 B. Muckenhoupt, [M], posed the problem of characterizing the pair of
weights (u(z),v(x)) for which the Hardy-Littlewood maximal function

Mf(z) = sup | Bz, )| /B Ll

r>0

satisfies
©01) [ Mr@r e <e [ 1P o)

where 1 < p < 0.

As a preliminary step to the characterization of pairs of weight for (0.1), he
proposed the characterization of the weights u(z) (respectively v(x)) for which
there exists a non-trivial weight v(z) (respectively u(z)) such that (0.1) holds.
Answers to the latter questions were given by L. Carleson and P. W. Jones [C,]],
A. E. Gatto and C. Gutiérrez [G,G], W. S. Young [Y] and J. L. Rubio de Francia
[RdeF]. These authors found that the condition

(0.2) /n w(z)(1+ |z)) ™™ dz < 00

on the weight u(z) is necessary and sufficient for the existence of a weight v(zx)
satisfying (0.1). For the existence of u(x) it is necessary and sufficient that v(x)

satisfy

(0.3) sup R~ / v(z)_”’/p dx < oo.
R>1 lz|<R

The solution for the analogous problem for the Riesz transforms, that is to
say, substituting R;f for M f, is also known, [RdeF] and [C,J]. In this case (0.2)
is again a necessary and sufficient condition on u(z), while the necessary and

sufficient condition on v(z) is
(0.4) / (1 +1z))™"" v(z) PP dz < 0.
R=

We shall denote by D3 the class of all weights v(z) satisfying (0.3) and by D,
the class of all weights satisfying (0.4). It is easy to see that D, < Dy.

The question of giving a characterization for the pair of weights (u, v) for which
(0.1) holds was answered by E. Sawyer, [S]; the analogous problem for the Riesz
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transforms remains open. Also open is the problem of the characterization of the

pairs of weights for which

p/r

o0 p/r o0
(0.5) /}Rn (Z Mfl(a;)r) uw(z)dr < C/Rn (Z[fl(x)‘r) v(z)dx

holds. Recently, L. M. Ferndndez-Cabrera and J. L. Torrea [F,T] have shown
that (0.2) is a necessary and sufficient conditions on u(x) for the existence of a
weight v(z) such that (0.5) holds.

In this paper we give a necessary and sufficient condition on v(z) in order that
(0.5) hold for some non-trivial weight u(z). We study the problem in the more
general context of Hardy-Littlewood operators M f for X-valued functions f(z),

X a Banach lattice, see §1. Thus, we are led to consider inequalities of the type

(06) | IMr@Iu@yds <c [ 15 olz) de

Clearly, when X = [" we obtain (0.5).

The main result of this paper is Theorem 1.7. It gives a characterization of
the classes D(p, X) of weights v(z) for which there exists u(x) such that (0.6)
holds, under certain restrictions on the lattice X. It turns out that these classes
of weights are intermediate classes between the classes D, and D associated
with the analogous problem for the Riesz and Hardy-Littlewood operators, re-
spectively. The classes D(p, X) can be defined, under certain restriction, for a
Banach lattice X without using the Hardy-Littlewood operator M and we shall
proceed in this way (see 1.4).

In §2, for the case X = [, we find a much more explicit characterization of
the classes D(p,!") that we denote simply as D(p,r). Moreover, we prove that
the inclusions

D, = D(p,1) € D(p,7) £ D(p,s) £ D(p,p) = D(p,t) = D;,

hold for 1 < r < s < p <t < 00, see Corollary 2.7.
In §3 we give some relations between D(p, X) and D(p, ) classes for spaces X
with convexity properties.
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1. Main results

Let (2, X, dw) be a complete o-finite measure space. A Banach space X consisting
of equivalence classes modulo equality almost everywhere of locally integrable real
functions on {2 is called a Kothe function space if the following conditions hold:
(i) I |f(w)] < |g(w)] a.e. on &, f is measurable and ¢ € X, then f belongs to
X and ||f]| < lg|l.
(ii) For every E € ¥ with u(F) < oo, the characteristic function Xg(w) of E
belongs to X.
Every Kdthe function space is a Banach lattice under the natural order:

f>0 ifandonlyif f(w)>0ae. onf.

Given a measurable function a{w) on  such that, for every f € X, f(w)a(w)
belongs to L(dw), we define

22(f) = /Q f(w)a(w) do.

The linear functional z} turns out to be bounded on X and z% is denoted by a.
Any functional on X of the form z is called an integral and the linear space of
all integrals is denoted by X'. The linear space X’ is said to be norming if for
every f € X we have

Ifllx = sup /f(w)a(w)dw.
||a‘l|é(;(7<_l Q

For more information on Banach lattices and Banach function spaces we refer
the reader to [L,T].

Let X be a Banach lattice and let J be a finite subset of the set Q4 of the
positive rational numbers. Given a locally integrable X-valued function f(z), =
in R*, we define

M f(z) = sup |B(z,r)|"" / 1F@)\ dy,
red (z,r)

where B(z,r) is the ball of radius 7 centered at z (|f(y)| = f(y) V(—f(y)) in the
lattice X).
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We shall assume in the sequel that X is a Kothe function space and X’ norming.
Then, for any = € R*, M, f(z) is a function of w € 2 given by

Mf@w) =sup B0 [ Iy
red B(z,r)
Here |f(y,w)| is the absolute value for real numbers and the sup is the
supremum for the lattice R of the real numbers.
We shall say that a Banach lattice satisfies the Hardy—Littlewood property
(HL) if there exists pp, 1 < pg < 0o, such that the operators M, are uniformly
bounded on L& (R™), that is to say, the inequality

[ IMu@IR b < cp [ 1S5 do
R™ R™

holds with a finite constant c,, not depending on J.

Given a Banach lattice X, a result of Bourgain [B] (see also [RdeF1]) says that
M are bounded (uniformly on J) in L% (R™) and also in L’)’(’,(R") for some p,
1 < p < oo, where p’ is the exponent conjugate to p, if and only if X is U.M.D.

The (HL) property was introduced by J. Garcfa-Cuerva, R.A. Macias and J.L.
Torrea, in [G-C,M,T]. In this paper they proved that a Banach lattice X has the
(HL) property if and only if

Ly | e Zumn WE)YP > A} | < eph™ /ank z) M7

holds for any p, 1 < p < oo, with ¢, a finite constant not depending on J (see
Theorem 1.7).

Definition 1.2: Given a finite sequence {r;}72,, where r; > 1 and r; € Q,, let

us denote by B; the balls B(0,r;). If {Q;}, is a measurable partition of 2, we
define the function ¢(z,w) as

(1.3) olz,w) = 3 1B X, (2) o, )
=1
We observe that ¢(z,w) is a step function in w, for any given z. Moreover, if a

belongs to X' then for any given z, ¢(z,w)a(w) belongs to X'. We denote this
function by ¢(z)a.
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Definition 1.4: Let v(z) be a weight on R® and X be a Kéthe function space
with X’ norming. For 1 < p < oo, we shall say that v(z) belongs to the class
D(p, X) if
sup / ||<p(:c)a||§£.v(x)"”l/" dz < co.
a€eX’ "
llallx» <1
Next, we shall show that the classes D, and Dy, are in some sense extremal classes

of weights. More precisely, the following proposition holds:

ProOPOSITION 1.5: Let X be a Kothe function space with X’ norming. Then for
any p, 1 < p < o0, we have

D, C D(p,X) C D;.

Proof: Let B = B(0,7), r > 1. Then, ¢(z,w) defined by ¢(z,w) = Xp(x)/|B|
satisfies plz) 2" )
AB\T
= < — .
plz,w) ™ T oen (L4 |z

Therefore, ¢(z,w) is a function as in (1.3) and if a € X', |ja||x- <1, then

lo(x)al < clal(1+[z])~"
Since la||x~ = || (la]) llx-, we get

v(x)_”'/P

o(x)a p’,v(:r “Plrdr <ec ||a||pl‘ / s dx,
A"|| ”X ) (1+|3§|) D

which shows that D, C D(p, X).
To prove that D(p, X) C Dy, let B = B(0,7), 7 > 1, and ¢(z,w) = Xpg(z)/|B].
Let a € X', ||a]

x+ = 1, then
llo(z)allx- = Xp(x)/|Bl.
Thus,
r‘"”// v(z)—”'/” dr = cn/ ||<p(x)a||§,v(:c)—p’/” dz,
Jz|<r R
which shows that D(p, X) C D;. &

We shall see in §2 that D, and D;; coincide with D(p,! 1Y and D(p,1*), respec-
tively.
The following result gives a useful equivalence of the D(p, X) condition on

weights in terms of the maximal functions M.
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THEOREM 1.6: Let X be a Koéthe function space with X' norming and
1 < p < co. Then, the following conditions are equivalent for a weight v{x):
(i) v(z) belongs to D(p, X),
(ii) v(z)"P'/? is a locally integrable function on R™, and for any given ball
B = B(0,R), R > 1 and any X-valued locally integrable function f(x)
supported in the complement of B(0,2R), the inequality

1/p
sup M@l < ca ([ 150 ole) o)
z€B R™
holds, with a finite constant cp not depending on J.
Proof: Part (i) = (ii). Let R> 1, R € Q. and Qg = Q. Then,

() = p(z,w) = [B(0, R)| "X p(o,r) ()

is a function of the type of Definition 1.2.

Thus, since |lap(x)|x- = |lal|x+|B(0, R)|"*X p(o, R)(x), we have

leRwﬂ/ o(@) PPz < sup /W@
B(0,R) Iallx)}<l
ac X'

L P/de<c

which shows that v(x) P /? belongs to LL_(R™).

Let R > 1 and let f(z) be an X-valued function with support contained in
R"® ~ B(0,2R) and belonging to L% (v). Let J be a finite set of positive rational
numbers. We observe that if every » € J is smaller than or equal to R, then
Mjf(z) = 0 for z in B(0, R) and, therefore, there is nothing to prove in this
case. Let us assume that there exists at least one r € J such that » > R. We
define J' = {s: s =2r, r € J, r > R}. If z € B(0, R), we have

1
Myf(z,w) = sup / |f (y,w)| dy,
red CTLT B(x,r)

r>R

and, since for r € J and r > R we get that x € B(0, R) implies B(z,r) C B(0,2r),
then

1
My f(x,w) <27 sup — / |f (y, w)ldy.
seJ’' CnS" JB(0,s)

Now, let Q,, s € J', be the subset of £ where the supremum on the second

member is attained for that s. Then, if

Z |B 0 5 XB Os)( ) (OJ),

sedJ’
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we have

Mifew) e [ 1fleue)dv

Thus, for z € B(0, R), we get

IMof@)llx <c sup /a(w) £y w)oly, w) dy do
aeX’ Q Rn
lefl x* <1

<c s [ W el du

aeX
ffallx~<1

By Holder’s inequality and (i), we obtain

Mot @l < ([ 1@ dv) v ([ taeto) o) 77 dy)w

<e ( [ dy> "

This ends the proof of (i) = (ii).
Let us consider now part (ii) implies (i). By Holder’s inequality, we have

llaw(@) |- v(z) /P dz
R‘n

= [ Napl)ote) o de

7

B ||9||S:1pp§1 (/ . ( /Q a(w)p(z,w)9(z,w) dw) v(z)~HP da:)p

< (sup I, +sup 12)”',

where

L = /B(0,2R) (/Q a(w)e(z,w)g(z,w) dw> v(z)~ VP dg

)| xv(z) 1P
< /B o an |9@ )P o

()" ([ ree)

< cp < 0.

1/p’
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Let J be the finite set of rational numbers involved in the definition of ¢(z,w).
Then

I = /Rn (/Q a(w)p(z, w)g(T, w)Xgn ~ B(0,2R)(I)dw) (@) VP dx
< /Qla(w)M/lJ (9(,w)Xg < Bro,2r) (2)v(x) ") (0, w) duw.

By condition (ii), we get

I < [|Ms(g(z,w)Xpn « Bo2my(@)(x)"HP)(0)]|
1/p 1/p
<o ( [ lotar@ o o) dz) e ( s dx) ,

which ends the proof of part (ii) implies (i). ]

THEOREM 1.7: Let X be a Kéthe function space having the (HL) property,

with X' norming. Then for every p, 1 < p < 00, the following conditions are
equivalent:

(i) v(z) belongs to the class D(p, X).

(i) There exist a non-trivial weight u(z) and a finite constant c,, not depending
on J, such that

/ M f(z)|xu(z)dz < Cp/ 1f (@)5v(z) dz
R™ R™
holds for every f in L% (v).

Proof:  First we shall prove (i) = (i). Let R > 0, such that {5, p, u(z)dz > 0.
We can always assume that the function u(z) is bounded on R® and therefore
integrable on B(0, R). Let a belong to X', |la||x~ < 1, and ¢(z,w) as in (1.3).
We have

/R le(w)alg. v(y) ™/ dy

!

P

=| sup /Q a(w) ( / nw(y,w)v(y)""“’g(y,w)dy> dw

<1
I|9I|L§(_

< sup | / oy w0)oly)Pg(y,w) dy |I%.
”g“Lg(Sl R™



358 E. HARBOURE ET AL. Isr. J. Math.

We shall estimate the integral in the last member of the inequality above. Let
T1,...,Tm be rational numbers greater than or equal to one and {};}72, the
partition of £ in the definition of ¢(x,w) given in (1.3). Then

(1.8) ‘/n (,o(y,w)g(y,w)v(y) l/pdy ‘
E B T3 1 ,w)jv 1P dy.
< XQ I 0, )I / 0:ri) Ig(y )I (y) Y

Let z € B(0,R). If y € B(0,r;) it follows that |z — y| < |z] + r; < (R+ 1)r;
Then, (1.8) is less than or equal to

(R+1)" M (gv~/7)(z),

where J = {(R + 1)r1,...,(R+ 1)r,}. Thus, using the hypothesis (ii) we get
that the X-norm of (1.8) is bounded by

1/p
(R+1)" [u(B(o,R))-l [ st @5t dz]

<(/ lo(w)Ew(y)™ (y)dy)l/p=cnguL;5c.

This proves that (ii) implies (i).

Now, let us consider (i) == (ii). Let By = B(0,2%); Sy = Bx — Bk—1, k =
1,2,...and Sy = By. As we shall see, it is enough to prove that for any sequence
{J;} and s, 0 < s < 1 < p, the inequality

1/p p
(1.9) I (Z “MJJ-fj(fU)”I))() lpe(sey S (Z ”fi“z;,‘;(v))

holds with finite constants c; independent of the sets J;. Les us proceed to prove
(1.9). Given k > 0, let

f],(x)':fj(x)XBk+1(x) and f]”:f]_f],
Since the space X has the (HL)-property, by (1.1), we have

1/p

1/p
(& (ZHMJf;(x)n&) >l <ot [ (Z”fj(x)”gf) &
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where the constant ¢, does not depend on J. By a suitable version of the Kol-

mogorov inequality, we get

1/p
< ol Bf/e /B (ZufJ u”) de.

From the hypotheses (i) it follows that the right hand side of this inequality is
bounded by

i/p
[ Z HMJf}(fC)HZ)}>

1/p

1/p’
¢ |Bg|M? /B lef] )% )v (/B v—"’/”(x)dw)

1/p
k (Z ”f] ”i&(v)
7

The constants ¢, are finite since, as we have shown in Theorem 1.6, under
thecondition (i) the function v(z)™P'/? is locally integrable on R".

In order to prove (1.9) for the sequence of functions {f'} we observe that by
Theorem 1.6, part (ii), we have

1/p
sup M1} o) < o ( [N dz)

< di ( / nfj(z)n’;(vu)dz) ”

1/s i/p

/ Z “M f” ”p )S/Pd < cg Z ”fj”Il),’;((v) R

Thus,

where ¢ = di|By|'/*. Gathering together our estimates for the sequences {f!}
and {f]'}, we get

1/p

(1.10) [ Zan ][

LS(S,C) <k (Z “fJ“LP 2 (v) ) )

where the constant ¢, does not depend on J.
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In order to obtain (1.9) from (1.10) we just observe that for any finite sum

S 1M, H@I < S IM L@

j=1 i=1

m
where J = U Jj.
i=1
Finally, the sufficiency of (1.9) to prove (ii) follows from a version of a theorem

of Rubio de Francia that can be found in [F,T]. For the sake of completeness, we
give a direct argument to show that (1.9) implies (ii).

Let T} f(z) = ||Xs, (z)M,; f(x)llx. The operators of the family {T}, k fixed,
are sublinear and, by (1.9}, they satisfy the hypotheses of Theorem 4.2 on p. 554
of the book [G-C,RdeF]. Therefore, there exists uy(z) > 0 such that for every j,

(/ IT} f (z)Puk(x) dm) r < e (/ ”f(x)“')’w(x)dx) 1/p

holds for a finite constant ¢y not depending on j. Thus, for J = J;

1/p
([ 1Mo @B de) < g

Multiplying this inequality by c,”27* and adding in k we get

( J1M55@)ata) dx)”p < 11fle, -

where u(z) = Z ¢ P27 uy(z)Xs, (z) > 0 ae. |
k

2. Applications to ["-valued functions

We denote by I™, 0 < 7 < oo the linear space of all the sequences a = {ax}32, of
real numbers such that

oo 1/r
llall- = (Z |aklr) < 00,
k=1

whenever 0 < r < o0 and, for r = 00,

llalloo = sup fax].
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If 1 < r < oo, then " equipped with the norm ||a||, is a Banach space. It can
be shown that for 1 < r < oo, the spaces I” have the (HL) property, see section
2 of [G-C,M,T].

Let f(x) = {f:(z)} be an ["-valued and locally integrable function on R™. We
define

Mf(z) = {Mfi(z)},

where M stands for the ordinary Hardy-Littlewood maximal operator for scalar
valued functions on R®. Let J be any finite subset of the set @, of positive
rational numbers. Then

M f(z) = {M, fi(z)},
where M is the operator for the lattice of the real numbers. It is easy to prove
that
[Mf ()]l = = sup M f (@)l

Moreover, if {J} is a non-decreasing sequence of subsets of @, satisfying
Q4+ = U Jk, then

(2.1) IMF@)l = lim [ My, /@)l

We observe that the sequence in the right hand side is not decreasing. The
class D(p,!") shall be denoted by D(p,r).

We shall need the following well known result.

LEMMA 2.2: If1 <t < oo, then

sup ZAkak| = || A}
llall:<1

If0 <t <1, then

Sup t}:Akak\ = || Aljco-

This lemma shows that [* is norming when considered as a subspace of (I')*,
1<t < oo oras asubspace of (I®)*,0<t<1.

Since for 1 < r < oo, the space {" has the (HL) property, then Theorem 1.7,
applied to X = 1", 1 < r < oo shows that v(z) belongs to D(p,r), 1 < p < o0, if
and only if there exists a non-trivial weight u(z) such that

JiMat@)iputa)do <, / 1 (@)lPo(z) de,
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where the constant ¢, does not depend on J.

Thus, by (2.1) and the monotone convergence theorem, we get

[1Ms@putz) dz < < [r@lzoe) do
Hence, we have proved the following theorem:
THEOREM 2.3: A weight v(x) belongs to D(p,7),1 < p< o0, 1 <7 < oo if and
only if there exists a non-trivial weight u(z) such that

/Rn (ZMfk(I)T)P/T( dr<c / (Z|fk )p/rv(ao)dm.

Next, we shall study some properties of the classes D(p,r). We begin with the
following proposition rephrasing the D{p,I") = D(p, r) condition:

PROPOSITION 2.4: Let By = B(0,2%), k = 0,1,2,.... A weight v(z) belongs to
D(p,r), 1 <r < o0,1 < p < oo, if and only if there exists a finite constant c
such that

0o , p'/r
/n (Z (bkX B, (x)2_"k)r ) v(z)"PPdr < c

k=1
holds for any sequence b= {bi}, b, >0, [|b]|» < 1.

Proof: Given a sequence {r;} of rational numbers greater than or equal to one,
we define the sets
I(k) = {i: 2k < < 2'“'“},

k=0,1,2,.... Then, if a = {a;} € I 1<r<o0,a; >0, [la]|~ < 1, we have

Z(G,XB(O “) n)r < Z E XBk+1 (:C)Z_nkr .

1 k i€I(k)

Let us define b = {by}, where

1/r
bk = Z a: ;
i€I(k)
then ||bl|» = |lall»» < 1. This finishes the proof of the proposition. 1

Now we give a characterization of the D(p, r) condition in terms of averages of
v(z)~P'/P. This is the main result in this section.
Let So = B(0,1) and Sy = B(0,2%)~ B(0,2%1), k=1,2,....
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THEOREM 2.5: A weight v(x) belongs to D(p,7),1 <p < o0, 1 <r < o0, if and
only if the sequence A = {A},

A = 2‘"“”“/ v(:c)_’”l/” dz,
Sk

satisfies
i) Ael/?) if1<r<p, and
(i) p
(ii) Ael*ifp<r <.

Proof: For any sequence a = {a;}, a; > 0, we have

'

p'/r IS p'/r
(Z (akXB,c (:c)2_"k)rr) = (Z Xg, (x) Z a2'2"'”’k)

'

k k=m
oo
— Z XSm (:L,)z—nmp’ (2nr'm Z az'Q—nr'k)P /v i
m k=m

Therefore,

4

p'/r
(26) / (Z (akXBk (I)Q‘”k)T ) v(x)—p’/P dr = ZAmbm,
Rn k m
where
o pl/'l‘l
bm — <2nr'm Z a£/2__nr’k> .
k=m

For the sequence {b,,}, we have

) k
sz/p’ — Z2nr'm Z a£'2—nr’k — Z ( 2nr'm> az’z—TLT’k
m m 0

k>m k=0 \m=

Thus, [|b]|,/, < c||a||’::. By Lemma 2.2 and (2.6) we get

(i) if 1 <r <p, 1 <p<ooand A belongs to I/, then v(z) belongs to
D(p,r), and

(ii) if p < r < 00,1 < p < oo and A belongs to [, then v(z) belongs to
D(p,r).
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Now, let ¢ = {cx} be a sequence of real numbers such that ¢, > 0 and

lekllr/p < 1. We define

1 7
ar =c/?

Then, e = {ax} satisfies ||a||,» < 1. Thus

o P/
b, = (2711' m Z a'l,; 2—'nr'k> > afn = Cm.
k=m
If v(x) belongs to D(p,r), then we have

D emAm <D bmdAm <.

By Lemma 2.2 it follows that if 1 < r < p then A belongs to 1’/ P and if
p <r < oo then A belongs to [°°. ]

COROLLARY 2.7: If1<p<ooandl<r <s<p,then

Dy = D(p,1) £D(p,7) £ D(p,s) & D(p,p) = D;.

Ifp <r < o0, then
D(p,r) = D

Proof: By Proposition 1.5, we already know that D, C D(p,1) and D(p,r) C
D;. Let v(x) belong to D(p,1). By Theorem 2.5 the sequence {Ax} belongs to
I*. Then

/Rn (11)(_:;){;; o dr < Z2‘TLP k/ (z)~P 1P do

= ZAk <g¢
k=0

showing that D(p,1) C D,.
Let v(z) belong to D. Since

Ay = 2‘"”%/ o(z)P' /P dx < 2'"””“/ v(z)"P/? da,
Sk By

we have {Ag} € I°° and by Theorem 2.5, it follows that v(z) belongs to D(p,r)
for 0o > r > p. Thus Dy C D(p, 7). |
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3. The classes D(p, X) for spaces X with convexity properties
We begin with the following definition.

Definition 3.1: A Ko&the function space is said to be p-convex, 1 < p < oo, if
there exists a finite constant ¢, such that

1/p
1S )l <o (Z nxins})

holds for any finite sequence {x;} of elements of X. The least constant c, is
called the p-convexity constant of X.

A Kéthe function space is said to be g-concave if there exists a finite constant
C1? such that

1/q
ll:ll§ <Y || n)M,, if 1<g<oo
. X : P

or

m?xllzinx < C’°°||sup |xi|“x’ if g=o0,

holds for any finite sequence {z;} of elements of X. The last constant C9 is called
the g-concavity constant of X.

It is known that X is p-convex (concave) if and only if X* is g-concave (convex)
and ¢,(X) = C9(X*), (CUX) = ¢(X*)), 1+ 1 =1.

By combining Theorem 1.£.7 and 1.£12 in {L,T] we obtain the following useful
result:

PROPOSITION 3.2: Let X be a Kothe function space which is not p-convex for
any p, 1 < p < 0o. Then, for any ¢ > 0 and every positive integer m there exists

a sequence {e;}72, of pairwise disjoint (|e;| Ale;| = 0 if i # j) elements of X such

that
m m m
(l—E)ZaiS Zaiei SZai
i=1 i=1 x i=l

holds for any choice of the sequence {a;}™, of non-negative scalars.

We observe that since the elements of the sequence {e;}™; are disjoint, then
| > aiei] = |ai| |ei|. Therefore, the elements e; may be assumed to be positive.

Now we are in position to state our first result concerning the classes D(p, X).
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THEOREM 3.3: Let X be a Kothe function space with X' norming. Then, we
have
(i) D(p,X) = D, for every p, 1 < p < o0, if and only if X is not r-convex for
any 1 <r < o0,
(ii) D(p, X) = D;, for some p, 1 < p < o0, if and only if X is r-convex for some
r>1

Proof: We shall prove first the “if’ parts of (i) and (ii). Let us assume that X
is not r-convex for any 1 < r < oo0. Since by Proposition 1.5 we already know
that D, C D(p, X) for any Kéthe function space X and by Corollary 2.7 that
D, = D{(p, 1), we only need to show that D{p, X) C D{p,1).

Let F(x) = {f:(z)} be a sequence of real valued functions such that f;(x) =0

if 4 > m and satisfying

/ Z|f, z)dzr < oo.

Then, by Proposition 3.2 there exists a sequence {e;}™, of positive and pair-
wise disjoint elements of X such that

m

S 15

=1

<Z|f1

(3.4) (1-o)) Ifiwl <
1=1

Let G(y) = S, 1£i(y)les. We have

MJG(-T’W) = igIJ)IB(%TH_I/ (Z‘fz [ez W))
= su z,7)|!
st (]

Since the elements {e;} are pairwise disjoint, the supports of the e;(w) are

|fi(y)] dy) ei(w).

(zr)

pairwise disjoint sets and therefore
MGz, w) ZMth r)ei(w).
Thus, by Proposition 3.2, we have

> Mifi(xes

=1

IMsF(z)llp = ZMin(x) <(1-¢)!

=1

= (1= IMyG(@)lx-

X
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Let the support of F(z), and hence the support of G(z), be contained in
R™ ~ B(0,2R). Since v(z) belongs to D(p, X), by Theorem 1.6 and (3.4), we get

sup  [[MyF()lla <(1-€)™! sup [[MG(2)llx
<€B(0,R) z€B(0,R)

<ew-o ([ jeepeee)
(3.5) < (R)(1—e)! (/ IF (@) o(z) d:c)l/p.

On the other hand, since v € D(p, X), by Theorem 1.6, we know that v(z)~?/?
is a locally integrable function, therefore, by Theorem 1.6 again, we have that
(3.5) implies that v(z) belongs to D(p,1).

Let us prove the “if” part of {ii). We observe that if f belongs to L% and X
is assumed to be r-convex for a given r, 1 < r < 00, we have

(36) I i aoy <e [ 1@ dx)m-

Let v(z) belong to DX = D(r,00). By Holder’s inequality, we obtain

([ ot
il <1 // zw)alw)o(z) " f(z,w) do dal
< [( / o))" o(a) " o) " (/ |f<x,w>rdx)l/r do
<1 ([ et s as) " o (fiseoras)

Thus, by (3.6), we obtain
(3.7)

([ et

r’ —r' [ 1!
%-v(z) d$>

, , 1/r
() dx)

(/ lo(z)a| v(z) ™"/ dx) 1/

Let {Q,}, be the partition of Q and B(0,r;), {r;}/2;, r; > 1 in the definition
of ¢(z,w). Then, the integral inside the norm on the right hand side of the

X+
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inequality above is bounded in the order by
/ 'S a(w)Xa, () Xi3(0my@)/|BO, 7)) | 0y ™™/ d
<3 la()| (1BO, 7)™ /B o()~"/" dz) Xg, ()
=1

(0,7',')
< cla(w)],

since v € D(r,00) = D}. Thus, (3.7) is bounded by a constant. This shows that
v(z) belongs to D(r, X) or D} C D(r, X).

To prove the “only if” part of (i), let us assume that D(p, X) = Dp; then X
cannot be p-convex since, by the “if” part of (ii), D(p, X') would be equal to D}
and we know that D, # D;. Finally, if D(p, X) = D, for some p, 1 < p < oo
then X has to be r-convex for some r > 1, since otherwise D(p, X) = D, and,

again, this is impossible. ]

PRroPOSITION 3.8: Let X,Y be Kothe function spaces with X', Y' norming and
with the property that if ai,...a, are disjoint positive elements of X' with
| S"a;llx« = 1, then there exist by,...,b, € Y} so that || b;]
I Absllys > 1Y Aja;llx+ for all (A;). Then D(p,Y) C D(p, X).

Proof: We observe that if ||a||x- = 1 and ¢ = Y 1o, |Bi| " xB, (z)xe;(w) is a
step function one can consider a; = axq; and pick by,...,b, supported on
according to the theorem. Then let ¢' = 3 |Bi|™'xp,(2)xq;(w). Note that
llé(z)alix- < ||¢'(z)blly~ where b =3 b; and ||b]

y+ = 1 and

ye = 1.

THEOREM 3.9: Suppose X is a Kothe function space with X’ norming. If X is
r-convex, v > 1, then for any p, 1 < p < o0, we have

D(p,r) C D(p, X).

Proof: We may suppose that X is r-convex with constant one and so X' is
7' = s—concave with constant one. We show Y = {" works in Proposition 3.3.
In fact suppose ai,...,a, are as in the statement. Then if p; > 0 the function
Flp, . i) = | S 151
easily that there exist scalars cy, ..., ¢, so that 3 ¢;, u; > F(u) for all ¢ > 0 and

%~ is concave on the positive cone of R". It follows

> e¢j = F(1,...,1) = 1. Now pick b; to be disjoints elements in [* with norms
c;/s.
The following theorem generalizes the “if” part of (i).
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THEOREM 3.10: Let X be a Kéthe function space with X' norming. If X is
r-convex for some r > 1 and not s-convex for any s > r, then

D(p,X) = D(p,’f‘).

Proof: D(p,r) C D(p, X) is proved in the last Theorem.
The proof of D(p, X) C D(p,r) follows the same lines of the proof of part (i) of
Theorem 3.3 and we shall omit the details. We only point out that an appropiate

generalization of Proposition 3.2 is required:

PROPOSITION 3.11: Let X be a Kéthe function space with X' norming such
that X is r-convex for some r, 1 < r < oo and X is not s-convex for any s,
r < s < oo. Then, given € > 0 and a positive integer m, there exists a sequence

{e:}2, of pairwise disjoint elements of X such that

m T

(3.12) 1-8)) ai <

=1

X 1=1
holds for any sequence {a;}*, of non-negative scalars and c, the constant of

r-convexity of X.

Proof: We define
Xy = {f: f is measurable and |f|"/" = g for some g € X}.

Under our hypotheses, it is easy to check that

I flix,, = inf {Z WA 11 = Z |fil, fi € Xy, m > 1}

i=1

is a norm. The space X,y becomes a Kothe function space when equipped with

this norm. Moreover, if ¢, is the constant of r-convexity, then
(3.13) T AP e < Wl < HAP]

For more details see [L,T], p. 54. The space X(ry has the important property
of not being g-convex for any ¢ > 1. Then, by Proposition 3.2, given ¢ > 0 and
m > 0, there is a sequence {f;}72; of positive and disjoint elements of X (r) Such
that

m

(=038 < S hsly, <Soh
i=1 i=1

=1
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holds for any sequence {b;}72, of non-negative scalars. Then, since {f;} is pair-

wise disjoint, we have

(3.14) (Z bz’fi) v Z b7

Let e; = f}/r. Then e; € X and, by (3.13) and (3.14), we obtain

2

b el < IS ekl < D20 el
Thus,
Q-3 b <ot ey < S b
Taking a; = b)/" we get (3.12). n
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