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In t roduc t ion  

In 1978 B. Muckenhoupt, [M], posed the problem of characterizing the pair of 

weights (u(x), v(x)) for which the Hardy-Littlewood maximal function 

Mf(x)  = sup IB(x, r)1-1 f If(Y)] dy 
r>0 JB(z,r) 

satisfies 

io.1) iMs(x)l.uix) x <_ c ii(x)lp v(x) x, 

where 1 < p < c~. 

As a preliminary step to the characterization of pairs of weight for (0.1), he 

proposed the characterization of the weights u(x) (respectively v(x)) for which 

there exists a non-trivial weight v(x) (respectively u(x)) such that (0.1) holds. 

Answers to the latter questions were given by L. Carleson and P. W. Jones [C,J], 

A. E. Gatto and C. Guti6rrez [G,G], W. S. Young [Y] and J. L. Rubio de Francia 

[RdeF]. These authors found that the condition 

(0.2) f u(x)(1 + [x l ) -nPdx < co 
JR r ~  

on the weight u(x) is necessary and sufficient for the existence of a weight v(x) 
satisfying (0.1). For the existence of u(x) it is necessary and sufficient that v(x) 
satisfy 

(0.3) sup R -rip' f v(x) -p'/p dx < oo. 
R>_I alx[<_R 

The solution for the analogous problem for the Riesz transforms, that is to 

say, substituting Rif  for Mr, is also known, [RdeF] and [C,J]. In this case (0.2) 

is again a necessary and sufficient condition on u(x), while the necessary and 

sufficient condition on v(x) is 

(0.4) f (1 + xl) -~p v(x) -p'Ip dx < oo. 
dR n 

We shall denote by Dp the class of all weights v(x) satisfying (0.3) and by Dp 

the class of all weights satisfying (0.4). It is easy to see that Dp ~Dp. 

The question of giving a characterization for the pair of weights (u, v) for which 

(0.1) holds was answered by E. Sawyer, [S]; the analogous problem for the Riesz 
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transforms remains open. Also open is the problem of the characterization of the 

pairs of weights for which 

(0.5) 

holds. Recently, L. M. Ferngndez-Cabrera and J. L. Torrea [F,T] have shown 

that  (0.2) is a necessary and sufficient conditions on u(x) for the existence of a 

weight v(x) such that  (0.5) holds. 

In this paper  we give a necessary and sufficient condition on v(x) in order that  

(0.5) hold for some non-trivial weight u(x). We study the problem in the more 

general context of Hardy-Li t t lewood operators 2~4f for X-valued functions f(x), 
X a Banach lattice, see §1. Thus, we are led to consider inequalities of the type 

(0.6) A~ IIMf(x)llPx u(x)dx < A Ilf(x)llPx v(x)dx" - -  C n 

Clearly, when X = I r we obtain (0.5). 

The main result of this paper  is Theorem 1.7. It  gives a characterization of 

the classes D(p, X) of weights v(x) for which there exists u(x) such that  (0.6) 

holds, under certain restrictions on the lattice X. It  turns out that  these classes 

of weights are intermediate classes between the classes Dp and D~ associated 

with the analogous problem for the Riesz and Hardy-Lit t lewood operators, re- 

spectively. The classes D(p, X) can be defined, under certain restriction, for a 

Banach lattice X without using the Hardy-Lit t lewood operator M and we shall 

proceed in this way (see 1.4). 

In §2, for the case X = I ~, we find a much more explicit characterization of 

the classes D(p, l ~) that  we denote simply as D(p, r). Moreover, we prove that  

the inclusions 

Dp = D(p, 1) ~D(p, r) ~D(p, s) ~D(p,p) = D(p, t) = Dp 

hold for 1 < r < s < p < t < c~, see Corollary 2.7. 

In §3 we give some relations between D(p, X) and D(p, r) classes for spaces X 

with convexity properties. 
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1. M a i n  r e su l t s  

Let (Yt, E, dw) be a complete a-finite measure space. A Banach space X consisting 

of equivalence classes modulo equality almost everywhere of locally integrable real 

functions on E~ is called a Khthe function space if the following conditions hold: 

(i) If [f(w)l _< [g(o;)l a.e. on E~, f is measurable and g E X, then f belongs to 

Z and ]]f[] < ]]g]]. 

(ii) For every E E E with #(E)  < c~, the characteristic function XE(O;) of E 

belongs to X. 

Every Khthe function space is a Banach lattice under the natural order: 

f _ > 0  if and only if ] (w)_>0a .e .  o n ~ .  

Given a measurable function a(~) on ~ such that,  for every f E X, f(o;)a(o;) 
belongs to Ll(dw), we define 

* is denoted by a. * turns out to be bounded on X and x~ The linear functional x a 
Any functional on X of the form x* is called an integral and the linear space of 

all integrals is denoted by X ~. The linear space X ~ is said to be norming if for 

f 
]lfIlx = sup ] f(o;)a(w) do;. 

Ilallx*<l J~ 
a E X  ~ 

For more information on Banach lattices and Banaeh function spaces we refer 

the reader to [L,T]. 

Let X be a Banach lattice and let J be a finite subset of the set Q+ of the 

positive rational numbers. Given a locally integrable X-valued function f (x ) ,  x 

in R ~, we define 

Mgf(x) =suPlB(x,r)I-1/B If(y)ldY, 
rEJ  (x,r) 

where B(x, r) is the ball of radius r centered at x (If(Y)l = f(Y) V ( - f (y ) )  in the 

lattice X).  

x:( f )  = / f ( w ) a ( w ) d o ; .  

every f C X we have 
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We shall assume in the sequel that  X is a KSthe function space and X r norming. 

Then, for any x E R" , AJjf(x)  is a function of w E ~t given by 

Msf(x,~) = sup IB(x,r)l-1 / If(u,~)l du. 
r G J  J B(x,r) 

Here [f(y,w)[ is the absolute value for real numbers and the sup is the 

supremum for the lattice ~ of the real numbers. 

We shall say that  a Banach lattice satisfies the H a r d y - L i t t l e w o o d  p r o p e r t y  

(HL) if there exists P0, 1 < P0 < c~, such that  the operators A4j are uniformly 

bounded on L~(R~) ,  that  is to say, the inequality 

holds with a finite constant %o not depending on J. 

Given a Banach lattice X, a result of Bourgain [B] (see also [RdeF1]) says that  

A4j are bounded (uniformly on J)  in LPx(~ n) and also in L~.( I~  ~) for some p, 

1 < p < ec, where p~ is the exponent conjugate to p, if and only if X is U.M.D. 

The (HL) property was introduced by J. Garcla-Cuerva, R.A. Mac/as and J.L. 

Torrea in [G-C,M,T]. In this paper they proved that  a Banach lattice X has the 

(HL) property if and only if 

(I.I) I{x: (~-~'~lI.M.,S,~(x)ll~) ~/p 
k : l  

> I-< ' "  
k----i 

holds for any p, 1 < p < oo, with cp a finite constant not depending on J (see 

Theorem 1.7). 

Definition 1.2: Given a finite sequence {ri}i~:, where r~ _> 1 and r~ E Q+, let 

us denote by Bi the balls B(0, r~). If {~}~-1  is a measurable part i t ion of ~, we 

define the function ~(x, w) as 

(1.3) ~(x,w) = ~ IB~J-'XB,(x)X~,(w). 
i=1 

We observe that  ~(x, w) is a step function in w, for any given x. Moreover, if a 

belongs to X '  then for any given x, ~(x, a;)a(w) belongs to X t. We denote this 

function by ~(x)a. 
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Detinition 1.4: Let v(x) be a weight on 11~ n and X be a KSthe function space 

with X '  norming. For 1 < p < ec, we shall say tha t  v(x) belongs to the class 

D(p, X)  if 

[ II~(x)all~.v(z) -p'lp& < oo. sup 
aEX' JN 

Ilallx* <1 

Next, we shall show tha t  the classes Dp and D~ are in some sense extremal  classes 

of weights. More precisely, the following proposit ion holds: 

PROPOSITION 1.5: Let X be a K6the function space with X'  norming. Then for 

any  p, 1 < p < oo, we have 

Proob 

satisfies 

Dp C D(p, X)  C Dp. 

Let B = B(O,r), r _> 1. Then, ~(x ,w)  defined by ~(x ,m)  = XB(x)/IBI 

2 ~ 1 ~ ( x , ~ ) -  x B ( x )  < _ 
c . r "  - c~ (1 + Ixl) n 

Therefore, ~ (x ,w)  is a function as in (1.3) and i f a  e X',  Ilallx" ___ 1, then 

I~(x)al < c lal(1 + Ixl) -n.  

Since I lal lx* = II ( l a l )  I Ix ' ,  we get 

L ' , f v(x)-p'lp II#(x)a Px.V(X)-P /P dx < c llalIPx . (1 + ixl)np, dx, 

which shows tha t  Dp C D(p, X). 

To prove tha t  D(p, X)  c Dp, let B = B(0, r),  r > 1, and ~(x,  w) -- XB(X)/IB I. 

Let a E X' ,  IlaNx. = 1, then 

I I~ (x)a l lx .  = XB(x ) / IB I .  

Thus, 

i~_,,. JR 

which shows tha t  D(p, X)  C Dp. | 

We shall see in §2 tha t  Dp and D~ coincide with D(p, 11) and D(p, l~), respec- 

tively. 

The  following result gives a useful equivalence of the D(p, X)  condit ion on 

weights in terms of the maximal  functions .Mj. 
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THEOREM 1.6: Let X be a K6the function space with X '  norming and 

1 < p < co. Then, the following conditions are equivalent for a weight v(x): 

(i) v(x) belongs to D(p, X) ,  

(ii) v(x)-P'/P is a locally integrable function on R n , and for any given ball 

B = B(O, R), R >_ 1 and any X-valued locally integrable function f ( x )  

supported in the complement of B(O, 2R), the inequality 

sup [IAJJf(x)llx <_ cR Ilf(x)llVxv(x)dx 
xEB " 

holds, with a finite constant  cR not  depending on g. 

Proof." Par t  (i) ==~ (ii). Let R _> 1, R E Q+ and g t n =  ~. Then,  

~o(x) = ~(x ,w)  = IB(0, R ) i - i x 8 ( 0 , , ) ( x )  

is a function of the type of Definition 1.2. 

Thus, since [[a~(x)[[x. = ][a[[x* [B(0, R)[-iXB(O,R)(X), w e  have 

/ , B(0, R) -P v(x) -p'/p dx < sup ]la (x)ll . v(x)-p /~ dx < c, 
(O,R) Ilal[x* (_1 

aEX' 

which shows tha t  v(x) -p'/~ belongs to L~oc(Rn). 

Let R > 1 and let f ( x )  be an X-valued function with support  contained in 

R ~ \ B(O, 2R) and belonging to LPx(V). Let J be a finite set of positive rat ional  

numbers.  We observe tha t  if every r E J is smaller than  or equal to R, then 

A4af(x)  = 0 for x in B(0, R) and, therefore, there is nothing to prove in this 

case. Let us assume that  there exists at least one r E J such tha t  r > R. We 

define g '  = {s: s = 2r, r E J, r > R}. If  x E B(0,  R), we have 

M j f ( x , w )  = sup --1 /8 If(y, )ldy, 
rEJ Cn rn (x,r) 
r>R 

and, since for r E J and r > R we get tha t  x E B(0, R) implies B(x,  r) C B(0, 2r), 

then 

.A4jf(x,~o) < 2 n sup - - 1  /B  If(Y'~°)ldy" 
- -  s e a '  Cn s n  (0,s) 

Now, let ~ ,  s E J ' ,  be the subset of g / whe re  the supremum on the second 

member  is a t ta ined for tha t  s. Then, if 

= IB(o, 
sEJ' 
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we have 

Mjf (x ,w)  <_ c L~ If(y,w)l~(y,w)dy. 

Thus,  for x E B(0,  R), we get 

IIMJf(x)llx <_ c sup 
a E X '  

I lal lx*_<l 

< c sup 
a E X  I 

II,~llx* <_l 

S a(w)/R,~ f(y,w)~o(y,w) dydw 

L: IlI(y)llx" Ila~(y)llx" dy. 

By HSlder 's  inequality and (i), we obtain 

_ ' ' d y )  l ip '  
[['lk4jf(x)Nx < ( i  '[f(Y)'iPxv(y)dy) 1/p ( i  Hacfl(Y)NPx'v(Y)-P /p 

This ends the proof  of (i) ~ (ii). 

Let us consider now part  (ii) implies (i). By H51der's inequality, we have 

/ llano(x)I~.v(x)-'/Pdx 
n 

= LL~(x)v(z)-~I~LI~.  ex  

# 

= s . p  
IlgllL~.-- <1 

< (sup I1 + sup I2) p' , 

where 

II = iB(O,2R) (if~a(w)~(X'w)g(x'w)dw) v(x)-I/p dx 

<-- _ _.i~(0,2n) [[g(x)I[xV(X)-I/P dx 

._is,,.,x,,,..x>"..(S.. v,x,-..,...)1'" 
<_cR < oo. 
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Let J be the finite set of rat ional  numbers  involved in the definition of qo(x, w). 

Then  

I2 = £ ~  ( fn a(~o)~o(x, ~ )g(x, co)xRn \ B(o,2n) (x) d~o) v(x)-  l/P dx 

< £ la(~)IMj (g(x, ~)x~o. B(o ,=R) (x ) . ( x ) - I / P )  (0,~)dw. 

By condit ion (ii), we get 

z~ < IlM.(g(~,~)x~o. .(o,:.)(x)v(x)-~/')(o)llx (/ )i/p (/ )I/p 
< e l l g ( x ) v ( x ) - l / . l l P x . ( . )  dx  = c ttg(x)ll~ dx  , 

which ends the proof  of par t  (ii) implies (i). I 

THEOREM 1.7: Let X be a Khthe function space having the (HL) property, 
with X'  norming. Then for every p, 1 < p < oo, the following conditions are 

equivalent: 

(i) v(x) belongs to the c/ass D(p, X). 

(ii) There  exist a non-trivial weight u( x ) and a finite constant %, not depending 
on J, such that 

fR~ llM jf(x)Irxu(X) dx <_ cp £. Ilf(x)ll~v(x) dx 

holds for every f in LP (v). 

Proof." First  we shall prove (ii) ~ (i). Let R > O, such thatfB(0,R ) u(x) dx > O. 
We can always assume tha t  the function u(x) is bounded  on R n and therefore 

integrable on B(0,  R). Let  a belong to X ' ,  IlalIx* < 1, and qo(x,w) as in (1.3). 

We have 

II~(y)aII~. v(y)-~ IP dy 
t 

< ~up II [ ~(y,~>(y)-l/~g(y,~) dy II~. 
IIgIIL~ <_i JR 
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We shall estimate the integral in the last member of the inequality above. Let 

rl  . . . .  ,r,~ be rational numbers greater than or equal to one and {f~i}i~=l the 

partition of ~t in the definition of ~(x, w) given in (1.3). Then 

(1.8) dy 

m 

<_ ~-~Xa,(w)lB(O, r i ) l -1 /B ]g(y,w)lv(y)-l/Pdy. 
i : 1  (0,ri) 

Let z • B(0, R). If y • B(0, ri) it follows that ] z -  y] _< [z] + ri _< (R + 1)ri. 

Then, (1.8) is less than or equal to 

(R + 1)n.A/lj(gv-1/P)(z), 

where J -- {(R + 1 ) r l , . . . ,  (R + 1)r,~}. Thus, using the hypothesis (ii) we get 

that  the X-norm of (1.8) is bounded by 

( R +  1) n [u(B(O,R))-l f ],Mj(gv-1/P)(z)HPxU(z)dz] Wp 

<_ c I]g(y)l]Pxv(Y)-lv(y) dy = c []gllL~ <- c. 

This proves that  (ii) implies (i). 

Now, let us consider (i) ~ (ii). Let Bk = B(0,2k); Sk = Bk -- Bk-1, k --- 
1, 2 , . . .  and So = B0. As we shall see, it is enough to prove that for any sequence 

{Jj} and s, 0 < s < 1 < p, the inequality 

(1.9) 1[ IIMJJfJ(x)IlPx [[5.(s~) -< ck 

l i p  

II JllLx( )) 
holds with finite constants ck independent of the sets Jj. Les us proceed to prove 

(1.9). Given k _> 0, let 

f j (x)  = fj(X)XBk+,(X) and J~' = f j  - f j .  

Since the space X has the (HL)-property, by (1.1), we have 

1/p 

dx, 



Vol. 90, 1 9 9 5  MAXIMAL FUNCTIONS ON KOTHE FUNCTION SPACES 359 

where the constant cp does not depend on J. By a suitable version of the Kol- 

mogorov inequality, we get 

I[ (~j '['/~Jf;(x)[[Px) lip "gs(Bk)<~c[t~k'l/s-1/Bk+ 1 (~j '[fJ(X)'lPX) 1/pdx" 

From the hypotheses (i) it follows that the right hand side of this inequality is 

bounded by 

1/p 

]/p 
_< ck II ~IILx<~) 

The constants ck are finite since, as we have shown in Theorem 1.6, under 

thecondition (i) the function v(x) -p'/p is locally integrable on ~n. 

In order to prove (1.9) for the sequence of functions {f~'} we observe that by 

Theorem 1.6, part (ii), we have 

sup I[.Mjfj ( )llx <_ d~ [If~'(z)lLPxV(Z) dz xEBk 

Thus, 

[IM+fj (x)llx) dx k j 

1/s 

f Pp _< ck II JlIL~<~) 

where ck = dk]Bk] 1/~. Gathering together our estimates for the sequences {f~} 

and {f~'}, we get 

(1.10) II 
) 1/p 

II.MJfJ (x)ll p 
J 

[[Ls(Sk) ~ Ck (E P 1/p IlfjllL~(~)) , 

where the constant ck does not depend on J. 
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In order to obtain (1.9) from (1.10) we just observe that for any finite sum 

j = l  j----1 

where J = 0 JJ" 
j=l  

Finally, the sufficiency of (1.9) to prove (ii) follows from a version of a theorem 

of Rubio de Francia that can be found in IF,T]. For the sake of completeness, we 

give a direct argument to show that (1.9) implies (ii). 

Let T~f(x) = ItXs~ (x)3A.of(x)llx. The operators of the family {T~}, k fixed, 

are sublinear and, by (1.9), they satisfy the hypotheses of Theorem 4.2 on p. 554 

of the book [G-C,RdeF]. Therefore, there exists Uk(X) > 0 such that for every j ,  

(j (/ 
holds for a finite constant ck not depending on j. Thus, for J = Jj 

(~k ['MJf(x)l[Pxuk(x)dx) 1/p ~- ckNf']LPx(V)" 

Multiplying this inequality by c~P2 -k and adding in k we get 

( j  [[MJf(X)'[PxU(X)dx) 1/p ~- [[f[[L~x(V), 

where u(x) = ZC-~V2-kuk(x)XS~(x) > 0 a.e. | 
k 

2. A p p l i c a t i o n s  t o / r - v a l u e d  func t ions  

We denote by V, 0 < r < oc the linear space of all the sequences a = {ak}k~__l of 

real numbers such that 

whenever 0 < r < oo and, for r = oo, 

Ila[Ioo = sup [akl. 
k 



Vol. 90, 1 9 9 5  MAXIMAL FUNCTIONS ON KOTHE FUNCTION SPACES 361 

If 1 < r < cx~, then l ~ equipped with the norm ]]aH~ is a Banach space. I t  can 

be shown tha t  for 1 < r _< 0~, the spaces F have the (HL) property,  see section 

2 of [G-C,M,T]. 

Let f ( x )  = {f i (x)}  be an/~-valued and locally integrable function on IR '~. We 

define 

A4f(x)---  {Mf~(x)},  

where M stands for the ordinary Hardy-Li t t l ewood  maximal  opera tor  for scalar 

valued functions on ]R '~. Let J be any finite subset of the set Q+ of positive 

rat ional  numbers.  Then  

.A4jf(x)  = {Mj f i ( x ) } ,  

where M j  is the operator  for the lattice of the real numbers.  It  is easy to prove 

tha t  

I[Mf(x)ll~ -- sup [IMjf(x)ll~. 
J 

Moreover, if {Jk} is a non-decreasing sequence of subsets of Q+ satisfying 

Q+ = U Jk, then 

(2.1) I IMf(x) l l~  = lira IIMJ~f(x)ll~. 
k----* o<) 

We observe tha t  the sequence in the right hand side is not  decreasing. The 

class D(p, V) shall be denoted by D(p, r). 

We shall need the following well known result. 

LEMMA 2.2: I f  1 < t < oo, then 

sup 
Ilall*_<l 

I f  O < t <_ l, then 

I Akak[ = IIAIIt,. 
k 

sup l Akakl = tlAlt . 
Ilall,_<l k 

This lemma shows tha t  it is norming when considered as a subspace of (I t')*, 

1 < t < oo or as a subspace of ( /~)*,  0 < t < 1. 

Since for 1 < r <_ c~, the space l ~ has the (HL) property,  then Theorem 1.7, 

applied to X = F,  1 < r _< c~ shows tha t  v(x) belongs to D(p, r),  1 < p < c~, if 

and only if there exists a non-trivial  weight u(x) such tha t  

f lIMj (x)JI u(x)dx < cp f ii (x)ll:v(x)dx, 
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where the constant  Cp does not depend on J.  

Thus, by (2.1) and the monotone  convergence theorem, we get 

i IIMS(x)ll~(-) dx <_c i IlSCx)ll~v(x)dx. 

Hence, we have proved the following theorem: 

THEOREM 2.3: A weight v(x) belongs to D(p,r) ,  1 < p < oc, 1 < r <_ oc if  and 

only if  there exists a non-trivial weight u(x) such that 

Next,  we shall s tudy  some properties of the classes D(p, r). We begin with the 

following proposi t ion rephrasing the D(p, F) = D(p, r) condition: 

PROPOSITION 2.4: Let Bk = B(0, 2k), k = 0, 1, 2 , . . . .  A weight v(x) belongs to 

D(p, r), 1 < r < oc, 1 < p < oc, if  and only if there exists a finite constant c 

such that 

(bk~.~ (x)2-~k) ~ v(x)-P'lP dx <_ c 
n 

k = l  

holds for any sequence b = {bk}, bk _> 0, [Ibll~, < 1. 

Proof: Given a sequence {ri} of rat ional  numbers  greater than  or equal to one, 

we define the sets 

I (k)  = {i: 2 k < ri < 2k+1}, 

k = 0, 1 ,2 , . . . .  Then,  if a = {ai} E 1 ¢ ,  1 < r < oc, ai ~ 0, I[allr, < 1, we have 

E(a'~'(o,",)(x)r:°) ~' <- E ( Z ar')~.~+~(x) 2-'k~'. 
i k ie;(k) 

Let us define b = {bk}, where :),,r 
bk = a ; 

i 

then I[bilr, = liallr, _< 1. This finishes the proof  of the proposition, l 

Now we give a character izat ion of the D(p, r) condit ion in terms of averages of 

v(x) -B'/p. This is the main  result in this section. 

Let So = B(0, 1) and Sk = B(0, 2 k) \ B(0, 2k-1), k = 1, 2 , . . . .  
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THEOREM 2.5: A weight v(x) belongs to D(p,r), 1 < p < oc, 1 < r < oc, if and 

only if the sequence A = {Ak}, 

Ak  = 2 -np 'k  f V(X) -p ' /p  dx, 
JS  k 

satis//es 

(i) A C l (r'/p')' i [1  < r < p, and 

(ii) AC1 ~ i f p < r < o c .  

Proof: For any sequence a = {ai}, ai _> 0, we have 

(ak;~B~ (x)2-nk  ~' , , : Xsm (x) E a~ 2 - ' ~  k /  
k = m  

= 

Therefore,  

(2.6) ~ .  (akXB~ (X)2-nk) r V(X) -p'/" dx : E Ambm, 
J k~  

m 

where 
c~ ) p'/r' 

bin= 2n 'm Z 
k = r n  

For the sequence {bin}, we have 

Eb ,,p, = E2or'm E rn a k z = 
m m k>m 

r 
_ < e a k . 

k=0 

E r ~ - n  k 2nr'm ' v' 
a k z 

k=0 m = 0  

t 

Thus,  Ilbilr,/p, <_ cllallP,. By L e m m a  2.2 and (2.6) we get 

(i) if 1 _< r _< p, 1 < p < ~ and A belongs to l (r'/p')', then  v(x) belongs to 

D(p, r), and 

(ii) if p _< r _< co, 1 < p < ec and A belongs to l ~ ,  then v(x) belongs to 

D(p, r). 



364 E. HARBOURE ET AL. Isr. J. Math. 

Now, let c -= {ca} be a sequence of real numbers such that ca _> 0 and 

llcallr,/p, ~ 1. We define 
aa ~ ¢lk/P' 

Then, a = {ak} satisfies Ila]]~, _< 1. Thus 

bm 2 ~ 'm  a;'2 -nr'a\ = > a  p =era.  
k = m  

If v(x) belongs to D(p, r), then we have 

E z E z e 

By Lemma 2.2 it follows that if 1 < r < p then A belongs to l (¢/p')', and if 

p < r < oo then A belongs to l °~. | 

COROLLARY 2.7: I l l  < p < oc and 1 < r < s < p, then 

Dp -- D(p, 1) ~D(p,r)  ~D(p,s)  ~D(p,p) = D~. 

If  p < r < oc, then 
D(p, r) = Dp. 

Proof: By Proposition 1.5, we already know that Dp C D(p, 1) and D(p, r)  C 

D;.  Let v(x) belong to D(p, 1). By Theorem 2.5 the sequence {An} belongs to 

11. Then 

v(x)-p'/p 
fR~ (1 + fxf)~p' 

showing that  D(p, 1) C Dp. 
Let v(x) belong to D~. Since 

o o  

dx < E 2-=P'abf s 
a = 0  k 

o o  

= E Aa _~ c, 
k=0 

v(x) -p' /p dx 

Ak = 2-~P'k /S v(x)P'/P dx < 2-nP'a /B v(x)-P'/P dx, 
k k 

we have {Aa} E l ~ and by Theorem 2.5, it follows that  v(x) belongs to D(p, r)  

for cc > r > p. Thus Dp C D(p, r). | 
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3. T h e  classes D ( p , X )  for  spaces  X w i t h  c o n v e x i t y  p r o p e r t i e s  

We begin with the following definition. 

Definition 3.1: A KSthe function space is said to be p-convex, 1 _< p < cxD, if 

there exists a finite constant cp such that  

II(  < )lxill  
i 

holds for any finite sequence {xi} of elements of X. The least constant cp is 

called the p-convexity constant of X. 

A KSthe function space is said to be q-concave if there exists a finite constant 

C q such that  

o r  

cql[(  Ix lq)l/qllx, if  1 < q < c~  
i 

maxlIxil lx < C°°l lsuplxi l l lx  , if q = ~ ,  
i - -  i 

holds for any finite sequence {xi} of elements of X. The last constant C q is called 

the q-concavity constant of X. 

It is known that X is p-convex (concave) if and only if X* is q-concave (convex) 

and cp(X) = c a ( x * ) ,  ( c q ( x )  = cp(X*)), ~ + 1 = 1. 

By combining Theorem 1.f.7 and 1.f.12 in [L,T] we obtain the following useful 

result: 

PROPOSITION 3.2: Let X be a K6the function space which is not p-convex for 

any p, 1 < p < oo. Then, for any ~ > 0 and every positive integer m there exists 

a sequence {ei}i~l ofpairwise disjoint ([ei l A [ej[ = 0 i f i  ¢ j )  elements of X such 

that 

rn i=1  a i e i  rn  

i = l  X i--1 

holds for any choice of the sequence {ai}i~=: of non-negative scalars. 

We observe that  since the elements of the sequence {ei}i~: are disjoint, then 

[Y~ a~el I = ~ lail levi. Therefore, the elements ei may be assumed to be positive. 

Now we are in position to state our first result concerning the classes D(p, X) .  
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THEOREM 3.3: Let X be a K6the function space with X '  norming. Then, we 

have 

(i) D(p ,X)  = Dp for every p, 1 < p < oc, if and only if X is not  r-convex for 

any1 < r < oo, 

(ii) D(p, X)  = Dp for somep, 1 < p < oe, if and only if X is r-convex t'or some 

r > l .  

Proo~ We shall prove first the "if '  par ts  of (i) and (ii). Let us assume tha t  X 

is not  r -convex for any 1 < r < cx~. Since by Propos i t ion  1.5 we a l ready know 

tha t  Dp C D(p, X )  for any Khthe  function space X and by Corol lary 2.7 t ha t  

Dp = P(p, 1), we onty need to  show tha t  D(p ,X)  C D(p, 1). 

Let  F(x) -- { f i (x ) )  be a sequence of real valued functions such tha t  fi(x) - 0 

if i > m and satisfying 

m 

f ()-~' iS,(:~)l)Pv(:~) d:~ < oo. 
i = 1  

e m Then,  by Propos i t ion  3.2 there exists a sequence { i ) i= l  of posit ive and pair- 

wise disjoint elements  of X such tha t  

~=1 I f , ( y ) l e i  x m (3,4)  (1 - e) ~ If~(y)l <- ~ -< ~ If~(y)l, 
i = l  i----1 

Let G(y) = Z i ~ i  IL(y)Ie~. We have 

=suplB(x,r)l-l~ If~(y)ldy e~(w), 
r 6 J  i-~l (x,r) 

Since the elements {ei} are pairwise disjoint, the supports of the el(w) are 

pairwise disjoint sets and therefore 

.A4jG(x,w) = ~ Mjfi(x)ei(w).  
i----1 

Thus, by Proposition 3.2, we have 

IIMCf(z)ll~ = E M j S ~ ( x )  <_ (1 - e )  -~ Mjf~(x)e~ 
i = 1  i = 1  X 

= ( 1  - ~)-~lI.A4jC(x)l lx, 
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Let the support of F(x), and hence the support of G(x), be contained in 

N n \ B(0, 2R). Since v(x) belongs to D(p, X), by Theorem 1.6 and (3.4), we get 

sup IIMJf(x)llg, G ( 1 - - ¢ ) - '  sup IIZ4ja(x)llx 
xCB(O,R) xEB(O,R) 

< c(R)(1-z)-I (J[R'~ HG(x)ll~v(x)dx) 1/p 

(3.5) -< c ( R ) ( 1 - s ) - i  ( i  HF(x)'i[lv(x)dx) 1/p 

On the other hand, since v E D(p, X), by Theorem 1.6, we know that v(x) -p'/p 
is a locally integrable function, therefore, by Theorem 1.6 again, we have that 

(3.5) implies that v(x) belongs to D(p, 1). 

Let us prove the "if' part of (ii). We observe that if f belongs to L~ and X 

is assumed to be r-convex for a given r, 1 < r < c¢, we have 

(3.6) H(i If(x'w)l~dx)l/~Hx <-C~ ( i  'lf(x)N'xdx) 1/*" 

Let v(x) belong to D~* = D(r, oc). By HSlder's inequality, we obtain 

~(x)a ~x.V(X)-~ l~ dx) 

- s,,. l 
I I f l IL~_ <1 

i ( i  ., r -- dx) l,'r' ( i  dx) lit _< :(x,w) la(w) v(x) ~'I" • If(x,~): dw 

< -II (i i<,.(,.)<,r"v(x)-":" @'"' II.. • II (S i:(x,<.<,)i'dx)':" II.. 

Thus, by (3.6), we obtain 

(3.7) 

(/ 1/v' 

(i )'".. - -  r t  _ r  ! < c~ I~(x)al v(x) /~ dx . 

• m m Let {~'~z}i=l be the partition of ~ and B(0, ri), {ri}i=l, r i  > 1 in the definition 

of ~(x, w). Then, the integral inside the norm on the right hand side of the 
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inequality above is bounded in the order by 

I /ax f rdl ,.  
m 

_< ~--~. la(w)l (IB(O,r,)l-" £ dx) 
i =  1 (O,r~) 

_< cla( )l, 

since v C D(r, co) = D*. Thus, (3.7) is bounded by a constant .  This shows tha t  

v(x) belongs to n(r,  X )  or D* c D(r, X).  

To prove the "only if" par t  of (i), let us assume tha t  D(p, X)  = Dp; then X 

cannot  be p-convex since, by the "if" par t  of (ii), D(p, X)  would be equal to D~ 

and we know that  Dp ¢ Dp. Finally, if D(p, X)  = Dp for some p, 1 < p < cc 

then X has to be r-convex for some r > 1, since otherwise D(p, X)  = Dp and, 

again, this is impossible. | 

PROPOSITION 3.8: Let X, Y be Khthe function spaces with X' ,  Y '  norming and 

with the property that if a b . . . a n  are disjoint positive elements of X '  with 

HEajl[x.  = 1, then there exist b l , . . . , b n  E Y~ so that [ ] E b j ] [ v .  = 1 and 

[I E Aibjl[Y" >- 1[ E Ajai[lx" for a11 (Aj). Then D(p,V) C D(p,X) .  

m Proof: We observe tha t  if [[a[lx* = 1 and ¢ -- ~ i = 1  [Bil-lXB,(X)Xfh(a:) is a 

step function one can consider aj = axf~ j and pick b l , . . . ,  b,~ suppor ted  on ~ 

according to the theorem. Then  let ¢ '  = ~ ]Bil-lXs,(x)xn,x(w). Note tha t  

II¢(x)allx* <_ II¢'(x)bllY. where b = E bj and Ilbllv* = 1. 

THEOREM 3.9: Suppose X is a Kfthe function space with X ~ norming. / f X  is 

r-convex, r > 1, then for any p, 1 < p < co, we have 

D(p, r) C D(p, X).  

Proof: We may suppose tha t  X is r-convex with constant  one and so X ~ is 

r r = s - -concave  with constant  one. We show Y = l ~ works in Proposi t ion  3.3. 

In fact suppose a l , . . . ,  an are as in the statement.  Then  if #j  _> 0 the function 
1/s 's F ( # ] , . . . ,  #n) = II E aj x-  is concave on the positive cone of R n. It  follows 

easily tha t  there exist scalars c l , . . . ,  cn so tha t  ~ cj, #j >_ F(#) for all # _> 0 and 

c i = F ( 1 , . . . ,  1) = 1. Now pick bj to  be disjoints elements in P with norms 
cl/s 
J 

The following theorem generalizes the "if '  par t  of (i). 
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THEOREM 3.10: Let  X be a K6 the  function space wi th  X '  norming.  I f  X is 

r -convex  for some r > 1 and not  s -convex for any s > r, then 

D(p, X )  = D(p,  r). 

Proof." D(p,  r) C D(p,  X )  is proved in the last Theorem. 

The proof of D(p,  X )  C D(p,  r) follows the same lines of the proof of part (i) of 

Theorem 3.3 and we shall omit the details. We only point out that  an appropiate 

generalization of Proposition 3.2 is required: 

PROPOSITION 3.11: Let  X be a K6 the  function space wi th  X '  norming  such 

that  X is r -convex  for some r, 1 < r < oc and X is not  s -convex  for any s, 

r < s < oc. Then, given ~ > 0 and a posi t ive integer m,  there exists  a sequence 
e rn { i}~=1 ofpa irwise  disjoint e lements  of  X such that  

(3.12) (1 - e) a• < - -  aiei <_ c ~ T 

- -  r a i  

i=1 i=1 

holds for any sequence {ai}iml Of non-negative scalars and c~ the constant  o[ 

r -convex i ty  of  X .  

Proo~ We define 

X(~) = {f: f is measurable and tfl  1/~ = g for some g • X}. 

Under our hypotheses, it is easy to check that 

Ilfltx(~) = inf il I f i l l /~l lx:  Ifl = E ] f i l , f i  e X ( ~ ) , m  >_ 1 
i=1 i=1  

is a norm. The space X(r) becomes a KSthe function space when equipped with 

this norm. Moreover, if c~ is the constant of r-convexity, then 

(3.13) Ifll/ ll  _< I[fllx¢ ) <_ 1[ Ifll/ ll . 

For more details see [L,T], p. 54. The space X(~) has the important property 

of not being q-convex for any q > 1. Then, by Proposition 3.2, given ~ > 0 and 

m > 0, there is a sequence {fi}i~l of positive and disjoint elements of X(~) such 

that 
m m ~ t  

(1-e)Ebi < II  bJ llx<r, _< 
i=1  i=1  i=1  
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holds for any sequence {bi}im=l of non-negative scalars. Then, since {fi}  is pair- 

wise disjoint, we have 

(3.14) ( E b i f i )  1/r E 1/r 1/r = b i f} • 

Let ei = -i . Then ei E X and, by (3.13) and (3.14), we obtain 

Crrll ~..¢ lit 1/r r 

Thus, 

(1 - e) E bi <_ ]l E b~/reiHx <- c: E bi. 

Taking a~ = b~/~" we get (3.12). | 
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